First-principle computation of zero-field splittings: application to a high valent Fe(IV)-oxo model of nonheme iron proteins.

نویسندگان

  • Fredy Aquino
  • Jorge H Rodriguez
چکیده

We report the computational implementation of a combined spin-density-functional theory and perturbation theory (SDFT-PT) methodology for the accurate calculation of zero-field splittings (ZFS) in complexes of the most diverse nature including metal centers in proteins. We have applied the SDFT-PT methodology to study the cation of the recently synthesized complex [Fe(IV)(O)-(TMC)(NCCH(3))](OTf)(2), [J. Rohde et al., Science 299, 1037 (2003)] which is an important structural and functional analog of high-valent intermediates in catalytic cycles of nonheme iron enzymes. The calculated value (D(Theory)=28.67 cm(-1)) is in excellent agreement with the unusually large ZFS reported by experiment (D(Exp)=29+/-3 cm(-1)). The principal component D(zz) of the ZFS tensor is oriented along the Fe(IV)=oxo bond indicating that the oxo ligand dominates the electronic structure of the complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination by high-frequency and -field EPR of zero-field splitting in iron(IV) oxo complexes: implications for intermediates in nonheme iron enzymes.

[Fe(IV)O](2+) species have been implicated as the active form of many nonheme iron enzymes. The electronic structures of iron(IV) oxo complexes are thus of great interest. High-frequency and -field electron paramagnetic resonance is employed to determine accurately the spin Hamiltonian parameters of two stable complexes that contain the FeO unit: [FeO(TMC)(CH 3CN)](CF 3SO 3) 2, where TMC = tetr...

متن کامل

Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.

Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iro...

متن کامل

Reactivity comparison of high-valent iron(IV)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size.

The ring size effect of macrocyclic TMC ligands in nonheme iron(IV)-oxo complexes has been examined in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions; an iron(IV)-oxo complex bearing a smaller TMC ligand is more reactive in both HAT and OAT reactions, resulting from its high Fe(IV/III) redox potential.

متن کامل

Direct Observation of a Nonheme Iron(IV)–Oxo Complex That Mediates Aromatic C–F Hydroxylation

The synthesis of a pentadentate ligand with strategically designed fluorinated arene groups in the second coordination sphere of a nonheme iron center is reported. The oxidatively resistant fluorine substituents allow for the trapping and characterization of an Fe(IV)(O) complex at -20 °C. Upon warming of the Fe(IV)(O) complex, an unprecedented arene C-F hydroxylation reaction occurs. Computati...

متن کامل

Mechanistic Insight into Alcohol Oxidation by High-Valent Iron-Oxo Complexes of Heme and Nonheme LigandsThis research was supported by the Ministry of Science and Technology of Korea through Creative Research Initiative Program.

High-valent iron–oxo species are frequently invoked as the key intermediates in the catalytic oxidation of organic substrates by heme and nonheme iron mono-oxygenases. In the case of heme-containing enzymes such as cytochromes P450, oxoiron(iv) porphyrin p-cation radicals have been proposed as active oxidants that effect a number of oxidation reactions, which include alkane hydroxylation, olefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 20  شماره 

صفحات  -

تاریخ انتشار 2005